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BISICLES - Goal

Goal: Build a parallel, adaptive ice-sheet model

= |ocalized regions where high resolution needed to accurately resolve ice-sheet
dynamics (500 m or better at grounding lines)

Large regions where such high resolution is unnecessary (e.g. East Antarctica)
Problem is well-suited for adaptive mesh refinement (AMR)

Want good parallel efficiency
Need good solver performance

Much higher resolution (1
km versus 5 km) required
in regions of high velocity
(yellow - green).

Ross Sea
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BISICLES - Approaches

O Develop an efficient parallel implementation of Glimmer-CISM by

Incorporating structured-grid AMR using the Chombo framework to increase
resolution where needed

Exploring new discretizations and formulations where appropriate (L1L2)
Improving performance and convergence of linear and nonlinear solvers, and

Deploying auto-tuning techniques
to improve performance of key e
computational kernels. EI:Q,
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Block-Structured Local Refinement

Level M

O Refined regions are organized into rectangular > oazsor

patches. * oo
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Q Algorithmic advantages: 0.1}
» Build on mature structured-grid discretization 0.0
methods. 0.1}
= Low overhead due to irregular data structures, 0.2}
relative to single structured-grid algorithm. 03[
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“L1L2” Model (Schoof and Hindmarsh, 2010).

Q Uses asymptotic structure of full Stokes system to construct a
higher-order approximation

» Expansion in ¢ -- ratio of length scales %

= Computing velocity to 0(&?) only requires T to 0(¢)

O Computationally much less expensive -- enables fully 2D
vertically integrated discretizations. (can reconstruct 3d)

QO Similar formal accuracy to Blatter-Pattyn 0(&2)
= Recovers proper fast- and slow-sliding limits:
« SIA (1 < A<¢g /n)-- accurate to 0(e2A™2)
« SSA (¢ <1<1) - accurate to 0(&?)
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Discretizations

O Baseline model is the one used in
Glimmer-CISM:

= Logically-rectangular grid, obtained
from a time-dependent uniform

mapping.
= 2D equation for ice thickness, coupled with ﬁ —b—-—V--Hi{

2D steady elliptic equation for the horizontal ot

velocity components. The vertical velocity is

obtained from the assumption of

incompressibility. ° ﬂ _ £ VT -u-VT + 9 _ Wﬁ
= Advection-diffusion equation for temperature. & pc pC 0L

O Use of Finite-volume discretizations (vs. Finite-difference discretizations)
simplifies implementation of local refinement.

QO Software implementation based on constructing and extending existing solvers
using the Chombo libraries.
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Interface with Glimmer-CISM

Q Glimmer-CISM has coupler to CESM, additional physics
= Well-documented and widely accepted

A Our approach - couple to Glimmer-CISM code as an
alternate “dynamical core”
= Allows leveraging existing Glimmer-CISM capabilities
= Use the same coupler to CESM

» BISICLES code sets up within Glimmer-CISM and maintains its
own storage, etc.

= Communicates through defined interface layer

= Instant access to a wide variety of test problems

» Interface development almost complete

= Part of larger alternative “dycore” discussion for Glimmer-CISM
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Recent Progress (Since January LIWG)

QO Added temperature solver
= Horizontal and vertical advection, vertical diffusion
= Currently testing

Q Linear and nonlinear solver improvements (improved
robustness)

Q Improvements to Glimmer-CISM/BISICLES dycore
interface and design

Some software redesign
Q Basic calving model
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BISICLES Results - Pine Island Glacier

Q Poster by Cornford, et al

Q PIG configuration from LeBrocq:
= Bathymetry: combined Timmerman (2010), Jenkins (2010), Nitsche (2007)
= AGASEA thickness

1
= |sothermal ice, A=4.0x 10717 Pa"3 m~1/3q
= Basal friction chosen to roughly agree with Joughin (2010) velocities

a Specify melt rate under shelf:

0 H < 50m
= M, = Z(H=50) 50 <H <500m m/a
9
50 H > 500m

O Constant surface flux = 0.3 m/a
Q Evolve problem - refined meshes follow the grounding line.
Q Calving model and marine boundary condition at calving front
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Pine Island, cont

Ice shelf, grounding line, t =0
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Pine Island, cont

Ice shelf, grounding line, t = 7.75yr
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Pine Island, cont

Ice shelf, grounding line, t = 15.65yr
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Pine Island, cont

Ice shelf, grounding line, t = 23.56yr
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Pine Island, cont

Ice shelf, grounding line, t = 31.125yr
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Pine Island, cont

Refined mesh, t=0
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Pine Island, cont

Refined mesh, t = 7.75yr
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Pine Island, cont

Refined mesh, t = 15.625yr
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Pine Island, cont

Refined mesh, t = 23.575yr
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Pine Island, cont

Refined mesh, t = 30.125yr
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Pine Island, cont

4000.
.: 3000.
2000.
1000.

— 0.000
Max: 2634.
Min: 0.000

Basal ice velocity, t =0
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Pine Island, cont

4000.
.: 3000.
2000.
1000.

— 0.000
Max: 3092.
Min: 0.000

Basal ice velocity, t = 7.75
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Pine Island, cont

4000.
.: 3000.
2000.
1000.

— 0.000
Max: 3271.
Min: 0.000

Basal ice velocity, t = 15.625
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Pine Island, cont

4000.
.: 3000.
2000.
1000.

— 0.000
Max: 4580.
Min: 0.000

Basal ice velocity, t = 23.375
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Pine Island, cont

4000.
.: 3000.
2000.
1000.

— 0.000
Max: 4765.
Min: 0.000

Basal ice velocity, t = 31.125
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Antarctica

Uses new “model-friendly” problem setup
(Le Brocq, Payne, Vieli (2010) )
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Antarctica, cont

« 10 km base mesh with 2 levels of refinement (5 km, 2.5 km)
« base level (10 km): 258,048 cells (100% of domain)
« level 1 (5 km): 431,360 zones (41.8% of domain)
... * Level2 (2.5 km): 728,832 cells (17.7% of domain)
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Parallel scaling, Antarctica benchmark
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BISICLES - Next steps

O More work with linear and nonlinear velocity solves.
Semi-implicit time-discretization for stability, accuracy.

Q Finish coupling with existing Glimmer-CISM code and CESM
= Testing with more complex and fully coupled problems

QO Performance optimization and autotuning.

QO Refinement in time?
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